Traction force microscopy in Dictyostelium reveals distinct roles for myosin II motor and actin-crosslinking activity in polarized cell movement.

نویسندگان

  • Maria L Lombardi
  • David A Knecht
  • Micah Dembo
  • Juliet Lee
چکیده

Continuous cell movement requires the coordination of protrusive forces at the leading edge with contractile forces at the rear of the cell. Myosin II is required to generate the necessary contractile force to facilitate retraction; however, Dictyostelium cells that lack myosin II (mhcA-) are still motile. To directly investigate the role of myosin II in contractility we used a gelatin traction force assay to measure the magnitude and dynamic redistribution of traction stresses generated by randomly moving wild-type, myosin II essential light chain null (mlcE-) and mhcA- cells. Our data show that for each cell type, periods of rapid, directed cell movement occur when an asymmetrical distribution of traction stress is present, in which traction stresses at the rear are significantly higher than those at the front. We found that the major determinants of cell speed are the rate and frequency at which traction stress asymmetry develops, not the absolute magnitude of traction stress. We conclude that traction stress asymmetry is important for rapid, polarized cell movement because high traction stresses at the rear promote retraction, whereas low traction at the front allows protrusion. We propose that myosin II motor activity increases the rate and frequency at which traction stress asymmetry develops, whereas actin crosslinking activity is important for stabilizing it.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Actin-based propulsive forces and myosin-II-based contractile forces in migrating Dictyostelium cells.

It has been suggested that myosin II exerts traction forces at the posterior ends and retracting pseudopodia of migrating cells, but there is no direct evidence. Here, using a combination of total internal reflection fluorescence (TIRF) microscopy and force microscopy with a high spatial resolution of approximately 400 nm, we simultaneously recorded GFP-myosin II dynamics and traction forces un...

متن کامل

The regulation of myosin II in Dictyostelium.

Dictyostelium conventional myosin (myosin II) is an abundant protein that plays a role in various cellular processes such as cytokinesis, cell protrusion and development. This review will focus on the signal transduction pathways that regulate myosin II during cell movement. Myosin II appears to have two modes of action in Dictyostelium: local stabilization of the cytoskeleton by myosin filamen...

متن کامل

Molecular dynamics and forces of a motile cell simultaneously visualized by TIRF and force microscopies.

Cells must exert traction forces onto the substratum for continuous migration. Molecular dynamics such as actin polymerization at the front of the cell and myosin II accumulation at the rear should play important roles in the exertion of forces required for migration. Therefore, it is important to reveal the relationships between the traction forces and molecular dynamics. Traction forces can b...

متن کامل

Stretching Actin Filaments within Cells Enhances their Affinity for the Myosin II Motor Domain

To test the hypothesis that the myosin II motor domain (S1) preferentially binds to specific subsets of actin filaments in vivo, we expressed GFP-fused S1 with mutations that enhanced its affinity for actin in Dictyostelium cells. Consistent with the hypothesis, the GFP-S1 mutants were localized along specific portions of the cell cortex. Comparison with rhodamine-phalloidin staining in fixed c...

متن کامل

Mutants lacking myosin II cannot resist forces generated during multicellular morphogenesis.

We have used fluorescent labeling, confocal microscopy and computer-assisted motion analysis to observe and quantify individual wild-type and myosin II mutant cell behavior during early multicellular development in Dictyostelium discoideum. When cultured with an excess of unlabeled wild-type cells, labeled control cells are randomly distributed within aggregation streams, while myosin II mutant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 120 Pt 9  شماره 

صفحات  -

تاریخ انتشار 2007